Capítulo 4

REDES NEURONALES CON APRENDIZAJE NO SUPERVISADO


4.3.5.   Simulaciones en MATLAB

El ejemplo anterior puede ser simulado en MATLAB tecleando el siguiente código:

 

clear;echo on;clc;nntwarn off;

P= rands(3, 10);

%número de neuronas

S=9;

W= initsm(P,S)

M= nbdist(9,1);

tp= [50 800 1];

[W]= trainsm(W,M,P,tp)

echo off

 

La salida del programa fue:

 

Cuadro de texto: P= rands(3, 10);    %número de neuronas    S=9;    W= initsm(P,S)    W =        0.0890   -0.0460   -0.0732        0.0890   -0.0460   -0.0732        0.0890   -0.0460   -0.0732        0.0890   -0.0460   -0.0732        0.0890   -0.0460   -0.0732        0.0890   -0.0460   -0.0732        0.0890   -0.0460   -0.0732        0.0890   -0.0460   -0.0732        0.0890   -0.0460   -0.0732    M= nbdist(9,1);    tp= [50 800 1];    [W]= trainsm(W,M,P,tp)    TRAINSM: 0/800 epochs, neighborhood = 8, lr = 1.    TRAINSM: 50/800 epochs, neighborhood = 2.18102, lr = 0.391853.    TRAINSM: 100/800 epochs, neighborhood = 1, lr = 0.26182.    TRAINSM: 200/800 epochs, neighborhood = 1, lr = 0.124875.    TRAINSM: 300/800 epochs, neighborhood = 1, lr = 0.0615712.    TRAINSM: 400/800 epochs, neighborhood = 1, lr = 0.0314628.    TRAINSM: 500/800 epochs, neighborhood = 1, lr = 0.0169384.    TRAINSM: 600/800 epochs, neighborhood = 1, lr = 0.00981873.    TRAINSM: 700/800 epochs, neighborhood = 1, lr = 0.00624705.    TRAINSM: 800/800 epochs, neighborhood = 1, lr = 0.00439161.        W =       -0.0193    0.6667   -0.8727        0.2825    0.3835   -0.7513        0.1315   -0.2561   -0.6138       -0.3447   -0.6444   -0.3148       -0.0189   -0.7583    0.1976        0.5841   -0.6739    0.3511        0.3928   -0.1568    0.4000       -0.1120    0.5531    0.6401       -0.1119    0.7276    0.6691        echo off

Figura 4.22: Salida Ejemplo SOM

 

 

atras indice adelante