REDES NEURONALES ASOCIATIVAS
En la década de los 80´s con el fin de estudiar procesos que involucran sistemas gobernados por ecuaciones diferenciales no lineales surge la teoría clásica de control geométrico basada en la geometría diferencial; simultáneamente renace el estudio de las Redes Neuronales debido al redescubrimiento del algoritmo Backpropagation, este hecho sumado al fracaso de las metodologías tradicionales aplicadas a la inteligencia artificial y a la disponibilidad de herramientas computacionales de bajo costo permitieron el desarrollo las redes neuronales recurrentes cuya principal aplicación es el control e identificación de sistemas no lineales. Este desarrollo es posible debido a que las propiedades matemáticas de las redes recurrentes están enmarcadas en las mismas propiedades que fundamentan el control geométrico, la primera red neuronal recurrente de naturaleza dinámica fue propuesta por Hopfield en 1984 bajo el contexto de las memorias asociativas.
En la década de los 80’s con el fin de estudiar procesos que involucran sistemas gobernados por ecuaciones diferenciales no lineales surge la teoría clásica de control geométrico basada en la geometría diferencial; simultáneamente renace el estudio de las Redes Neuronales debido al redescubrimiento del algoritmo Backpropagation, este hecho sumado al fracaso de las metodologías tradicionales aplicadas a la inteligencia artificial y a la disponibilidad de herramientas computacionales de bajo costo permitieron el desarrollo las redes neuronales recurrentes cuya principal aplicación es el control e identificación de sistemas no lineales. Este desarrollo es posible debido a que las propiedades matemáticas de las redes recurrentes están enmarcadas en las mismas propiedades que fundamentan el control geométrico, la primera red neuronal recurrente de naturaleza dinámica fue propuesta por Hopfield en 1984 bajo el contexto de las memorias asociativas.